

Presentation Outline

- Building Overview Thesis Objective Architectural Breadth Study
- Construction Breadth Study
 Summary and Conclusions

nesis Objective rchitectural Breadt tructural Depth onstruction Breadt onclusions cknowledgements uestions

ze: 479,000 S.F. ost: \$94 Million ates of Construction: May 2006 – February 2009 15 - Story, U-shaped residential tower consisting of 432 units within a world-class urban development.

2 - levels of underground parking

1,000 S.F. pool located on the 13th floor.


Building Overview

Features

Location Project Team Structural System

esis Objective chitectural Bread ructural Depth onstruction Bread onclusions knowledgement uestions

Foundations

The foundations consist of spread and combined footing These footings are typically 12' X 12' by 24" thick

Columns

Reinforced concrete columns that are typically 16"x28" and 16"x32". The typical reinforcement is 8 #7 or 8 #8 bars, but varies throughout typical levels.

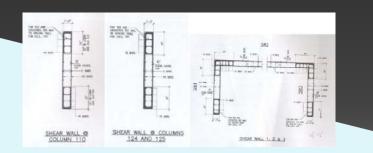
Typical Floors

Flat plate 7 ½" thick unbounded post-tension slabs, with two-way bottom reinforcement of #4@24" continuous bars each way.

Normal weight concrete at 5000 psi.

The post-tension cables consist of uniform endons being pulled in the S-N direction and the banded tendons are in the pulled in he W-E direction of the building

Building Overview


Features Location Project Team Structural System

Lateral System

•Concrete shear walls around the two elevator cores.

 Three other shear walls spread out on the west wing side of the building.

 Typical thickness of each shear wall is approximately 12"

Building Overview

Features Location Project Team Structural System

Thesis Objective Architectural Bread

onstruction Bre onclusions cknowledgeme

Structural Goals

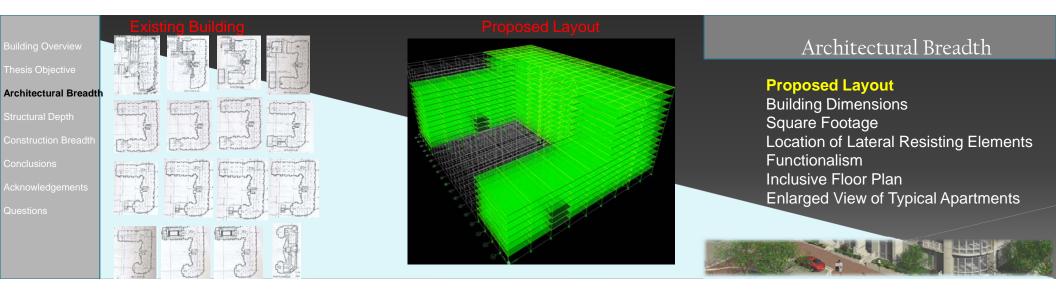
Thesis Objective

Architectural Breadth Structural Depth Construction Breadth

N N

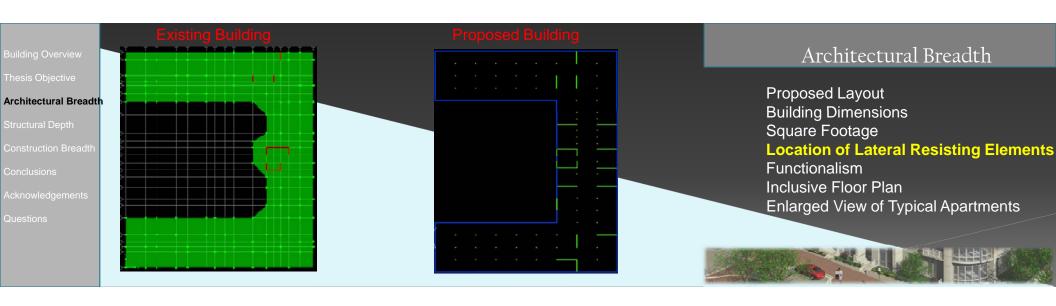
Building Overview Thesis Objective Architectural Breadth

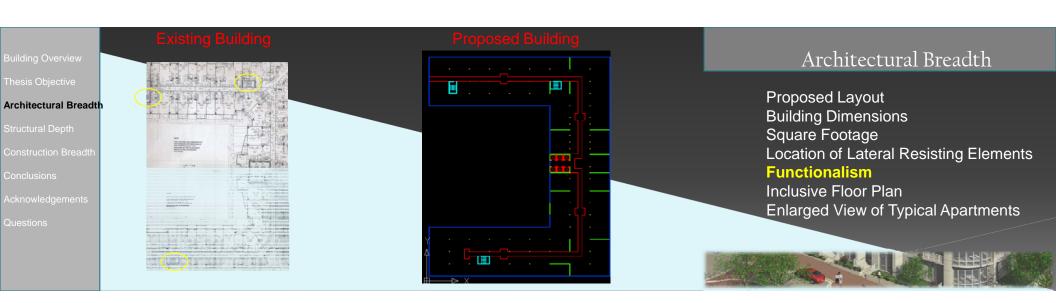
Structural Depth Construction Bread Conclusions Acknowledgement Questions

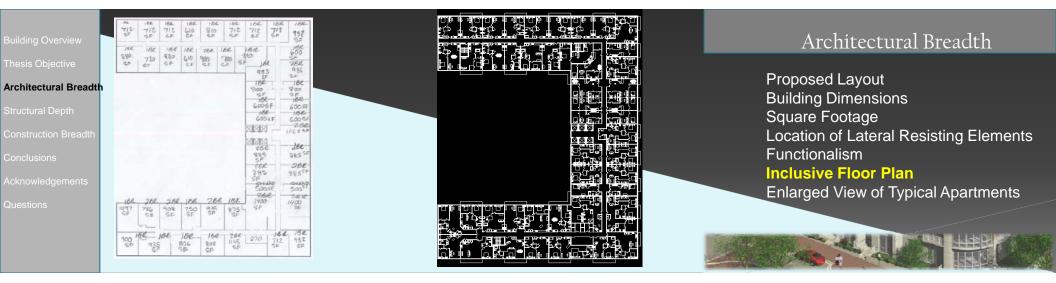

Thesis Assumption

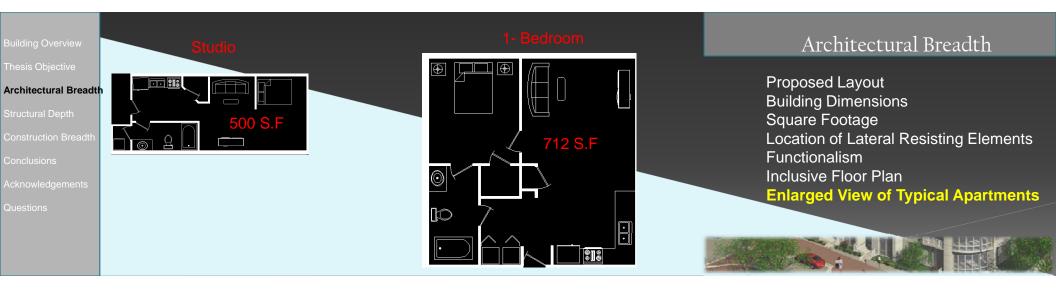
Assume that the two levels of underground parking will be capable of being integrating within the proposed column layout

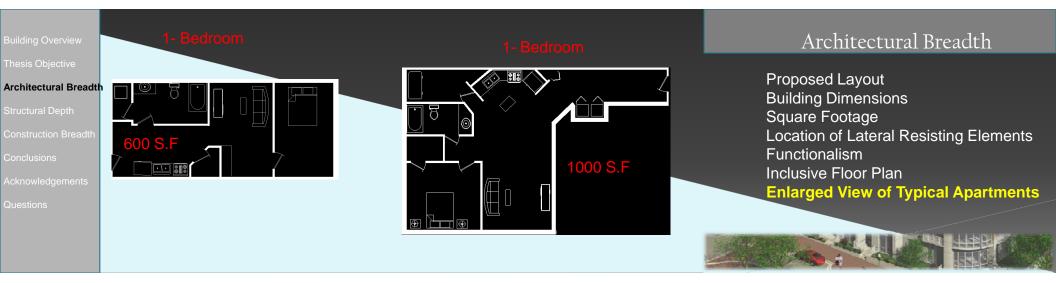
Architectural Breadth

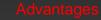

Proposed Layout Building Dimensions Square Footage Location of Lateral Resisting Elements Functionalism Inclusive Floor Plan Enlarged View of Typical Apartments








Building Overview	Floors	Existing Total	Estimated Total Area for Proposed Tower	Difference	Architectural Breadth
Thesis Objective		Floor Area	lor roposed rower		
	1	19,103	25,064	5,961	Proposed Layout
Architectural Breadth	2	22,988	28,708	5,720	
	3	30,510 30,507	34,368	3,858 3,873	Building Dimensions
Structural Depth	5	40,789	34,380 47,518	6,729	Square Footage
Construction Breadth	6	40,789	47,518	6,729	
Construction breadth	7	40,789	47,518	6,729	Location of Lateral Resisting Elements
Conclusions	8	40,970	47,699	6,729	Functionalism
Conclusions	9	32,974	38,179	5,205	
Acknowledgements	10	32,980	38,185	5,205	Inclusive Floor Plan
, totalo mougomonto	11	32,980	38,185	5,205	Enlarged View of Typical Apartments
Questions	12	32,980 33,158	38,185 28,843	5,205	Lindiged them of Typical Aparametric
	14	25,373	28,843	3,470	
	15	25,373	28,843	3,470	
	Roof	25,373	0	-25,373	
	Sum	507,636	552,036	44,400	


System	Two-Way Post- Tensioned Flat Plato w/ Normal Weight Concrete (EXISTING)	Two-Way Post- Tensioned Flat Plato w/ Lightweight Concrete	Precast Girdor- Slab	Two-Way Flat Plate w/ Normal Waight Concrete	Two-Way Flat Plate w/ Lightweight Concrete	Composite Deck with Non- Composite Steel Framing
Weight (psf)	94	74	74	138	101	45
Slab Depth (in)	7.5	8	б	11	11	3.5
Largest Depth	7.5	8	8	11	11	17.5
Construction Difficulty	Hard	Hard	Easy	Easy	Easy	Easy
Lead Time	Short	Short	Long	Short	Short	Long
Formwork	Yes	Yes	Little	Little	Little	Little
Additional Fireproofing	No	No	Yes	No	No	Yes
Lateral System Effects	N/A	Medium	Medium	High	Medium	High
Relative Vibration	Low	Low	Medium	Low	Low	High
Foundation Impact	N/A	Medium	Medium	High	Medium	High
Cost/SF						
Materials	\$10.62	\$10.75	\$10.72	\$7.64	\$7.77	\$16.61
Labor	\$8.01	\$8.01	\$3.15	\$8.10	\$8.10	\$7.73
Total (\$)	\$18.63	\$18.76	\$13.87	\$15.74	\$15.87	\$24.34

Structural Depth

Alternate Systems Overview of Girder-Slab Floor Framing Wind Distribution Seismic Distribution Braced Frames Drift

Girder-Slab

•Low floor-to-floor heights

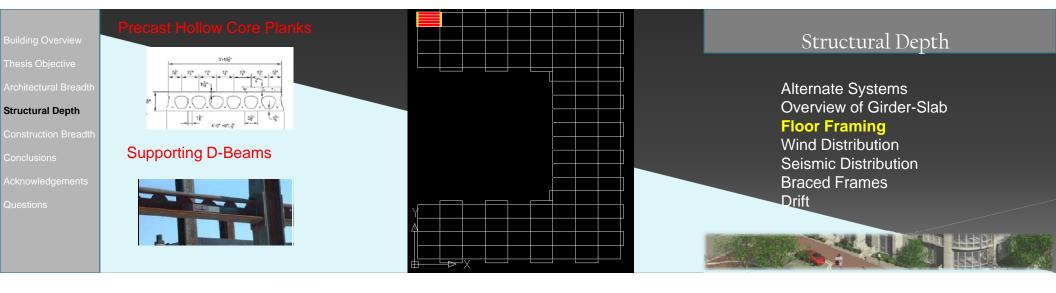
scast slabs can be set in place searly any climate condition

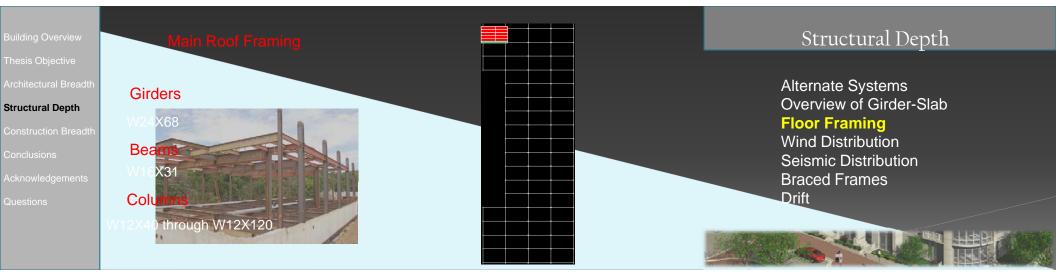
- Super-fast structure and building completion
- Reduced building structure weight
- Limited weather impact
- Limited on-site labor
- Reduced on-site overhead costs

Structural Depth

Alternate Systems Overview of Girder-Slab

Floor Framing Wind Distribution Seismic Distribution Braced Frames Drift




Building Overview Thesis Objective Architectural Bread Structural Depth Construction Bread Conclusions Acknowledgement

The underside of slab is a mote for celling finish.

The investive D-Beam Ginter was designed to allow the precisit stab to set on its bottom fange concesting in top fange and reto. Its formacrit or scaffolico to reached.

Juestions

uilding Overview	Load	(kips)	Shear	(kips)	Mome	nt (ft-k)
nesis Objective	N/S	E/W	N/S	E/W	N/S	E/W
ahitaatuwal Duaadth	32	25	0	0	4,536	3,548
chitectural Breadth ructural Depth instruction Breadth inclusions	62	48	32	25	8,096	6,327
ructural Depth	60	47	94	73	7,364	5,755
	58	45	154	120	6,512	5,083
onstruction Breadth	56	44	212	165	5,799	4,527
Sinstruction Dreadth	55	43	268	209	5,131	4,001
onclusions	54	42	323	252	4,546	3,542
	54	42	376	294	4,052	3,158
cknowledgements	53	41	430	335	3,494	2,721
U	51	40	483	376	2,936	2,284
uestions	50	39	534	416	2,401	1,866
	49	38	584	455	1,890	1,467
	47	37	633	493	1,393	1,080
	43	33	680	530	892	689
	47	36	712	560	E44	410
	770	599	770	599	59,587	46,464

Sti

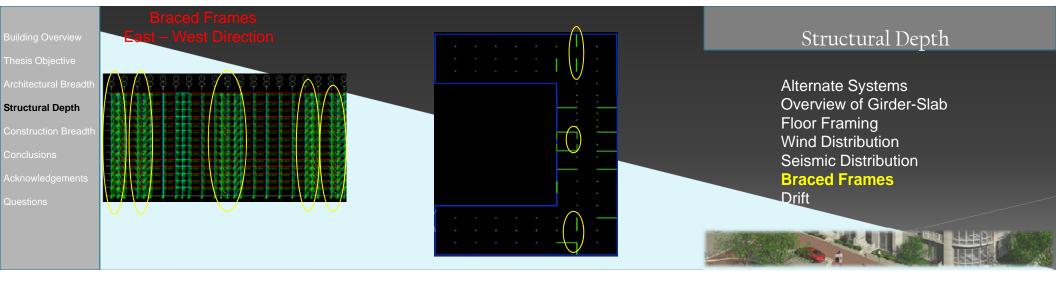
	Load	(kips)	Shear	(kips)	Morme	nt (ft-k)
	N/S	E/ W	N/S	E/W	N/5	E/W
	37	13	0	0	5,033	1,799
	66	24	36	13	8,290	2,964
_	58	21	103	37	6,636	2,370
	57	46	160	57	5,990	4,813
	54	44	217	103	5,230	4,197
	53	43	272	146	4,632	3,715
	53	43	325	189	4,124	3,308
	52	42	378	232	3,555	2,849
	51	41	431	274	2,986	2,390
	50	40	482	315	2,441	1,952
	48	3.9	532	355	1,920	1,534
	46	37	580	394	1,393	1,111
	42	34	626	430	891	708
	45	36	669	464	539	427
	714	500	714	500	53,661	34,136

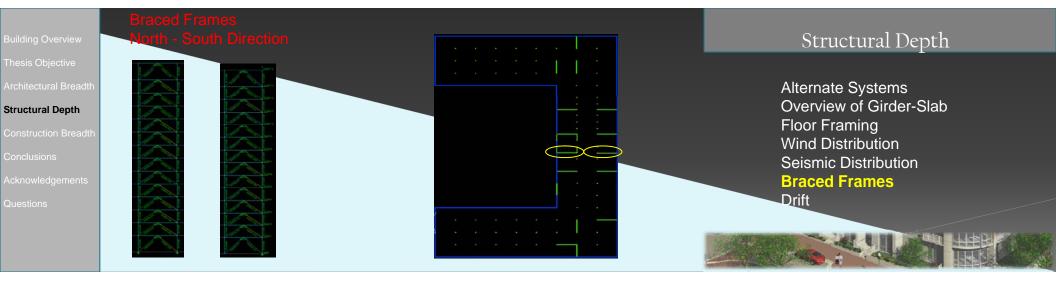
Structural Depth

Alternate Systems Overview of Girder-Slab Floor Framing Wind Distribution Seismic Distribution Braced Frames Drift

Building Overview							Load	Shear	Moment
	Level	w,	FL-FL Height	h	w,h,*	C _a	Fe	V.	M,
		(kips)	(ft)	(ft)			(kips)	(kips)	(ft-kips)
Thesis Objective	Roof	3,737	9.85	141.23	2,110,715	0.122	82	0	11,639
	15	3,641	9.48	131.38	1,874,727	0.108	73	82	9,617
	14	3,639	9,48	121.9	1,702,420	0.098	66	156	8,103
Architectural Breadth	13	3,936	9.21	112.42	1,660,102	0.096	65	222	7,287
a chine chanal Broadan	12	4,691	9.21	103.21	1,773,492	0.102	69	287	7,147
	11	4,691	9.21	94	1,573,508	0.091	61	356	5,775
Structural Depth	10	4,691	9.21	84.79	1,378,944	0.079	54	418	4,565
biluciulai Depili	9	4,690	9.21	75.58	1,189,964	0.069	46	471	3,512
	8	4,733	9.21	66.37	1,016,858	0.059	40	518	2,635
Second and Care Data adds	7	5,777	9.21	57.16	1,025,133	0.059	40	558	2,288
Construction Breadth	6	5,777	9.21	47.95	818,675	0.047	32	598	1,533
	5	5,777	9.21	38.74	623,084	0.036	24	630	942
	4	4,347	8.93	29.53	331,228	0.019	13	654	382
Conclusions	3	4,346	8.93	20.6	208,853	0.012	8	667	168
	2	3,317	11.67	11.67	77,019	0.004	3	675	35
	-		Totals		17,364,724	1.00	678	678	65,627

1	w,	FL-FL Height	h	w,h,*	C.	F.	V.	M,
_	(kips)	(ft)	(ft)			(kips)	(kips)	(ft-kips)
f	3,737	9.85	141.23	2,110,715	0.122	82	0	11,639
-	3,641	9,48	131.38	1,874,727	0.108	73	82	9,617
	3,639	9,48	121.9	1,702,420	0.098	66	156	8,103
	3,936	9.21	112.42	1,660,102	0.096	65	222	7,287
	4,691	9.21	103.21	1,773,492	0.102	69	287	7,147
-	4,691	9.21	94	1,573,508	0.091	61	356	5,775
<u>}</u>	4,691	9.21	84.79	1,378,944	0.079	54	418	4,565
	4,690	9.21	75.58	1,189,964	0.069	46	471	3,512
	4,733	9.21	66.37	1,016,858	0.059	40	518	2,635
1	5,777	9.21	57.16	1,025,133	0.059	40	558	2,288
	5,777	9.21	47.95	818,675	0.047	32	598	1,533
	5,777	9.21	38.74	623,084	0.036	24	630	942
	4,347	8.93	29.53	331,228	0.019	13	654	382
	4,346	8.93	20.6	208,853	0.012	8	667	168
	3,317	11.67	11.67	77,019	0.004	3	675	35


						Loau	Siledi	women
Level	Wx	FL-FL Height	h _x	w _x h _x ^k	C _{vx}	Fx	Vx	M _x
	(kips)	(ft)	(ft)			(kips)	(kips)	(ft-kips)
Roof	2,717	12.01	136.98	1,153,926	0.091	63	0	8,691
14	3,632	9.70	124.97	1,377,898	0.109	76	63	9,468
13	3,632	9.70	115.27	1,247,547	0.099	69	139	7,907
12	4,715	9.43	105.57	1,453,572	0.115	80	208	8,437
11	4,768	9.44	96.14	1,310,112	0.104	72	288	6,925
10	4,768	9.42	86.70	1,153,718	0.091	63	360	5,500
9	4,767	9.42	77.28	1,001,308	0.079	55	423	4,255
8	5,946	9.42	67.86	1,064,412	0.084	59	478	3,972
7	5,938	9.42	58.44	884,492	0.070	49	537	2,842
6	5,938	9.42	49.02	712,524	0.056	39	585	1,920
5	5,938	9.42	39.60	548,031	0.043	30	625	1,193
4	5,517	9.15	30.18	364,550	0.029	20	655	605
3	5,516	9.15	21.03	233,731	0.019	13	675	270
2	5,535	11.88	11.88	116,183	0.009	6	C 99	76
	1	otals		12,622,004	1.00	694	694	62,061


Load S

Structural Depth

Alternate Systems Overview of Girder-Slab Floor Framing Wind Distribution **Seismic Distribution** Braced Frames Drift

Building Overview
Thesis Objective
Architectural Breadt
Structural Depth
Construction Bread
Conclusions
Acknowledgements
Ouestiene

N	orth - South Direct	ion	
100	Wind Displacement N-S	Drift (in)	Check

ock K K
ĸ
n
ĸ
ĸ
ĸ
ĸ
ĸ
ĸ
ĸ
К
ĸ
ĸ
ĸ
ĸ

Drift due to Wind East – West Direction

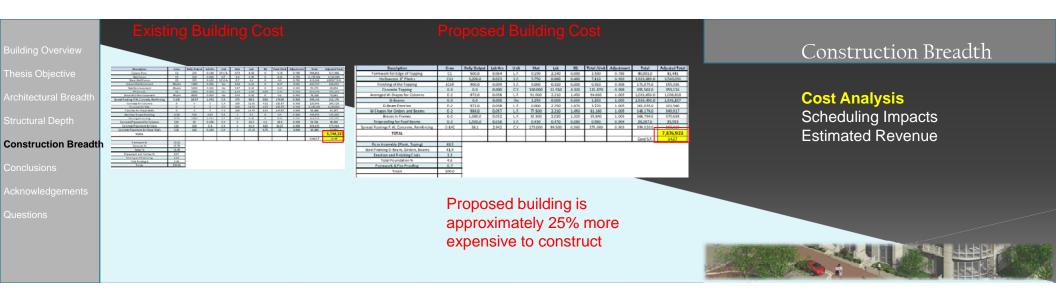
Wind Displacement E-W	Drift (in)	Check
3.37	0.360	ОК
3.01	0.190	ОК
2.82	0.210	ОК
2.61	0.210	ОК
2.4	0.280	ОК
2.12	0.280	ОК
1.84	0.280	ОК
1.56	0.280	ОК
1.28	0.270	ОК
1.01	0.259	ОК
0.751	0.230	ОК
0.521	0.197	ОК
0.324	0.165	ОК
0.159	0.159	OK

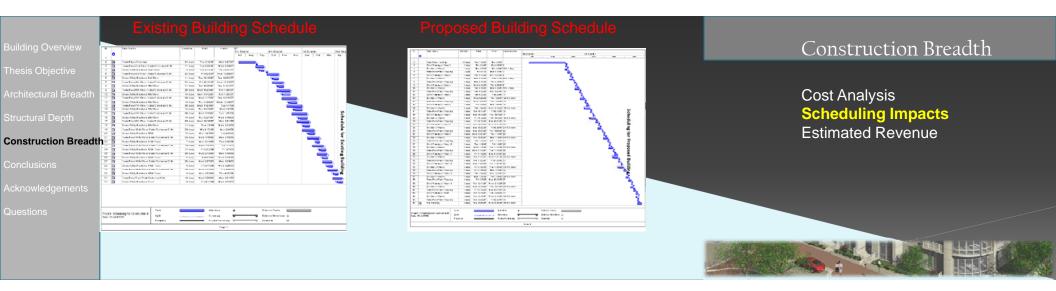
Structural Depth

Alternate Systems Overview of Girder-Slab Floor Framing Wind Distribution Seismic Distribution Braced Frames Drift

Architectural Bread Structural Depth Construction Bread Conclusions

Drift due to Seismic North - South Direction


0.015H	ETABS Displacement N-S	Actual Displacement (N-S)	Drift (in)	Check
2.1618	4.2	21	2.00	OK
1.746	3.8	19	1.50	OK
1.746	3.5	17.5	1.50	OK
1.6974	3.2	16	1.50	<u>OK</u>
1.6992	2.9	14.5	1.50	OK
1.6956	2.6	13	1.50	OK
1.6956	2.3	11.5	1.00	OK
1.6956	2.1	10.5	1.50	OK
1.6956	1.8	9	1.50	OK
1.6956	1.5	7.5	1.50	OK
1.6956	1.2	6	1.50	OK
1.647	0.9	4.5	1.05	OK
1.647	0.69	3.45	1.45	OK
2.1384	0.4	2	0.00	OK


Drift due to Seismic East – West Direction

ETABS Displacements E-W	Actual Displacements (E-W)	Drift (in)	Check	Cd
4.3	21.5	2.00	OK	5
3.9	19.5	1.50	OK	5
3.6	18	1.00	OK	5
3.4	17	1.50	OK	5
3.1	15.5	1.50	OK	5
2.8	14	0.75	OK	5
2.65	13.25	1.25	OK	5
2.4	12	1.50	OK	5
2.1	10.5	1.50	OK	5
1.8	9	1.50	OK	5
1.5	7.5	1.50	OK	5
1.2	6	1.50	OK	5
0.9	4.5	1.50	OK	5
0.6	3	0.00	OK	5

Structural Depth

Alternate Systems Overview of Girder-Slab Floor Framing Wind Distribution Seismic Distribution Braced Frames

Existing Building

Building Overview	Rent				
	Existing Building	# of Apartments	Total S.F.	Cost/S.F.	Total Rent
Thesis Objective	Floor				
	15	22	25,373	1.50	38059.5
Architectural Breadth	14	22	25,373	1.50	38059.5
Architectural Breadth	13	22	25,373	1.50	38059.5
	12	32	32,980	1.50	49470
Structural Depth	11	32	32,980	1.50	49470
	10	32	32,980	1.50	49470
Construction Breadth	9	32	32,974	1.50	49461
Construction Dreadth	8	32	40,789	1.50	61183.5
	7	40	40,789	1.50	61183.5
Conclusions	6	40	40,789	1.50	61183.5
	5	40	40,789	1.50	61183.5
Acknowledgements	4	30	30,507	1.50	45760.5
Acknowledgements	3	30	30,510	1.50	45765
	2	21	22,988	1.50	34482
Questions	1	5	19,103	1.50	28654.5
	Total	432	474,297	1.50	711,446

Proposed Building Rent Generated per Mont

New Building	# of Apartments	Total S.F.	Cost/S.F.	Total Rent
Floor				
14	29	28,843	1.40	40380.2
13	29	28,843	1.40	40380.2
12	29	38,185	1.40	53459
11	38	38,185	1.40	53459
10	38	38,185	1.40	53459
9	38	38,179	1.40	53450.6
8	38	47,518	1.40	66525.2
7	47	47,518	1.40	66525.2
6	47	47,518	1.40	66525.2
5	47	47,518	1.40	66525.2
4	39	34,380	1.40	48132
3	39	34,368	1.40	48115.2
2	39	28,708	1.40	40191.2
1	5	25,064	1.40	35089.6
Total	502	523,012	1.40	732,217

Construction Breadth

Cost Analysis Scheduling Impacts Estimated Revenue

Architectural Goals

is Objective tectural Breadth tural Depth

Conclusions

cknowledgem uestions

Integrate a new column layout that coincides with

existing building architecture

Improve overall quality of floor plans

 Design apartments that meet square footage requirements while maintaining style, shape, and overall quality

Summary

- 17' X 28' bays with braced frames
 Gained an additional 45,000 S.F. which
- resulted in 70 more apartments
- Corridors were shortened and opened up to prevent the feeling of walking through a tunnel
- An additional elevator was integrated with proposed system
- •Architecture not only complied with square footages, but provided more variety, i.e. non typical apartments, option of a 3-bedroom and also used the concept of mirroring apartments to save money on construction costs.

Conclusion and Summary

Architectural Breadth

Structural Depth Construction Breadth Overall Conclusion

Structural Goals

Conclusions

Design floor system and supporting elements to resist

ravity loading for the proposed uilding

 Design a lateral system that will resist wind and seismic forces due to strength and servicability for the proposed structure

Summar

• Foundations will not significantly change due to the loading on columns and weight of the building

• Rolled W12 shapes were spliced and redesigned every 4- floors

 8" x 4'0" Hollow core planks with a 2" topping spanned 28', while DB9 X46 beams spanned 17'. Typical grout: 6ks

 Lateral system consisted of 20 specially concentric braced frames that resisted strength and met servicability requirements for drift due to seismic and wind loads

Conclusion and Summary

Architectural Breadth Structural Depth Construction Breadth Overall Conclusion

Accelerate the speed of

Conclusions

- Proposed building system was found to be approximately 25% more expensive to construct upfront
- Proposed system was estimated to cost \$7,876,923.00
- Highly probable that the proposed building will be completed at least 4- months earlier
- than existing building The addition apartments will generate

Conclusion and Summary

Architectural Breadth Structural Depth **Construction Breadth Overall Conclusion**

Building Overview Thesis Objective Architectural Bread Structural Depth

Conclusions

cknowledgemer Questions

Thesis Assumptions

•Assume that the two levels of underground parking will be capable of being integrated within the proposed column lavout

Overall Conclusion and Recommendation

Changing the current structural system of a two-way flat plate posttensioned slab with shear walls to a precast girder-slab floor utilizing braced frames would save the owner approximately \$750,000 and improve the overall floor plan. This number does not include the future revenue generated by the 70 additional apartment throughout the life of the building

Conclusion and Summary

Architectural Breadth Structural Depth Construction Breadth Overall Conclusion

Building Overview	Acknowledgements	- ?	Ackalostidgements
Thesis Objective	 My parents, Stuart and Jacqueline 	29.1	
Architectural Breadth	Krasavage		
Structural Depth	Turner Construction		
Construction Breadth	Richard MurphyDr. Ali Memari		2:
Conclusions	 Professor Robert J. Holland 		
Acknowledgements	 John Matuszewski & Neil Atkinson All industry professionals that 		
Questions	provided information		
	 All AE professors 		
	 Fellow 5th year Architectural Engineering 		